Finite Math Helper
 Dr. Del's Crib Sheet
 Linear Models M 117

Review the Definitions and Formulas Quick and Easy
Utilized in Triad Math's Online
Finite Math Helper Program
You are invited to visit:
www.FiniteMathHelp.com
for the full story!
Author: Craig Hane, PhD. aka Dr. Del
Copyright by Triad Math, Inc.
All Rights Reserved

Linear Equation - Straight Line Slope

$$
\begin{gathered}
A x+B y=C \\
y=-\frac{A}{B} x+\frac{C}{B}
\end{gathered}
$$

$$
\begin{gathered}
\text { Slope }=-\frac{A}{B}=m \\
\frac{C / B-0}{0-C / A}=\frac{C / B}{-C / A}=-\frac{A}{B}
\end{gathered}
$$

Linear Equation - Straight Line Slope

$$
\begin{gathered}
A x+B y=C \\
y=-\frac{A}{B} x+\frac{C}{B}
\end{gathered}
$$

$$
\begin{gathered}
\text { Slope }=-\frac{A}{B}=m \\
\frac{C / B-0}{0-C / A}=\frac{C / B}{-C / A}=-\frac{A}{B}
\end{gathered}
$$

Point - Slope Linear Equation - Straight Line

$$
\text { Slope: } \quad m=\frac{\left(y_{1}-y_{2}\right)}{\left(x_{1}-x_{2}\right)}=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=-\frac{A}{B}
$$

$$
\begin{aligned}
& y=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}\left(x-x_{1}\right)+y_{1} \\
& y=\frac{\left(y_{1}-y_{2}\right)}{\left(x_{1}-x_{2}\right)}\left(x-x_{2}\right)+y_{2}
\end{aligned}
$$

Two Linear Equations - Solutions

$\mathrm{L}: A x+B y=C$
$\mathrm{L}^{\prime}: \boldsymbol{A}^{\prime} \boldsymbol{x}+\boldsymbol{B}^{\prime} \boldsymbol{y}=\boldsymbol{C}^{\prime}$

$$
\begin{array}{cl}
B^{\prime} A x+B^{\prime} B y=B^{\prime} C & A^{\prime} A x+A^{\prime} B y=A^{\prime} C \\
B A^{\prime} x+B B^{\prime} y=B C^{\prime}{ }_{1} & A A^{\prime} x+A B^{\prime} y=A C^{\prime} \\
x=\frac{B^{\prime} C-B C^{\prime}}{B^{\prime} A-B A^{\prime}} & y=\frac{A C^{\prime}-A^{\prime} C}{A B^{\prime}-A^{\prime} B}
\end{array}
$$

Two Linear Equations - Solutions - cont.

Substitutions

$$
\begin{array}{rl}
A x+B y=C & x=[C-B y] / A \\
B_{1} y=C_{1} & y=C_{1} / B_{1} \\
& x=\left[C-B\left(C_{1} / B_{1}\right)\right] / A \\
A_{11} x_{1}+A_{12} x_{2}=C_{1} & x_{1}=\left[C_{1}-A_{12}\left(C_{1} / A_{22}\right)\right] / A_{11} \\
A_{22} x_{2}=C_{2} & x_{2}=C_{2} / A_{22}
\end{array}
$$

Example:

$$
\begin{array}{ll}
3 x+4 y=8 & -5 x+2 y=9 \\
5 y=7 \quad y=\frac{7}{5} & 3 x=7 \quad x=\frac{7}{3} \\
x=\left[8-4\left(\frac{7}{5}\right)\right] / 3 & y=\left[9-(-5)\left(\frac{7}{3}\right)\right] / 2
\end{array}
$$

Page 9

Constraining Functions - cont.

Page 10

Linear Programming

Max \& Min $\quad \boldsymbol{P}_{\mathbf{1}} \boldsymbol{x}+\boldsymbol{P}_{\mathbf{2}} \boldsymbol{y}$

$$
\begin{array}{ll}
\left(x_{1}, y_{1}\right) & P_{1} x_{1}+P_{2} y_{1} \\
\left(x_{2}, y_{2}\right) & P_{1} x_{2}+P_{2} y_{2} \\
\left(x_{3}, y_{3}\right) & P_{1} x_{3}+P_{2} y_{3}
\end{array}
$$

L_{1}, L_{1}, L_{1} are lines of constraint
Define the region to find the max or \min of R The end points $\left(x_{1}, y_{1}\right) \quad i=1,2,3$

Linear Programming - cont.

$$
F(x, y)=A x+B y
$$

Evaluate $\boldsymbol{F}\left(\boldsymbol{a}_{1}, \boldsymbol{b}_{1}\right), \boldsymbol{F}\left(\boldsymbol{a}_{2}, \boldsymbol{b}_{2}\right), \boldsymbol{F}\left(\boldsymbol{a}_{3}, \boldsymbol{b}_{3}\right), \boldsymbol{F}\left(\boldsymbol{a}_{4}, \boldsymbol{b}_{4}\right)$ The largest value is the Max.

The smallest value is the Min.

Corner Points

Evaluate objective function at common points to determine maximum or minimum values.

$\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B y}$ Max is unbounded if $\boldsymbol{A}>\mathbf{0}$ and x is unbounded
Min is unbounded if $\boldsymbol{A}<\mathbf{0}$ and x is unbounded
$\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B y}$ Max is unbounded if $\boldsymbol{B}>\mathbf{0}$ and y is unbounded
Min is unbounded if $\boldsymbol{B}<\mathbf{0}$ and y is unbounded

Linear Programming

$$
\begin{gathered}
P_{1}, P_{2} \text { are Products } \\
C_{1}, C_{2}, C_{3} \text { are Components } \\
T_{1}, T_{2}, T_{3} \text { are Totals of } C_{1}, C_{2}, C_{3} \text { with } R \text { results }
\end{gathered}
$$

$$
\begin{array}{ccccccc}
& & C_{1} & C_{2} & C_{3} & R & \\
P_{1} & x & a_{1} & a_{2} & a_{3} & P_{1} & a_{i} \geq 0 \\
P_{2} & y & b_{1} & b_{2} & b_{3} & P_{2} & b_{i} \geq 0 \\
& & T_{1} & T_{2} & T_{3} & &
\end{array}
$$

$$
\begin{array}{lll}
L_{1} & a_{1} x+b_{1} y \leq T_{1} \\
L_{2} & a_{2} x+b_{2} y \leq T_{2} & \\
L_{3} & a_{3} x+b_{3} y \leq T_{3} &
\end{array}
$$

Columns

$$
\text { Rows }\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[a_{i j}\right] \text { where }{\underset{j}{j j_{j}}}_{\text {row }}^{\text {col }}
$$

Add

$$
\begin{gathered}
A+B=C \\
{\left[a_{i j}\right]+\left[b_{i j}\right]=\left[a_{i j}+b_{i j}\right]=c_{i j}}
\end{gathered}
$$

Multiply

$$
\begin{gathered}
A \times B=C \\
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \times\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]} \\
=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{11}+a_{22} b_{22}
\end{array}\right] \\
=\left[C_{i j}\right] \text { where } C_{i j}=a_{i 1} b_{j 1}+a_{i 2} b_{j 2} \\
\text { Row } i \times C o l j
\end{gathered}
$$

Identity

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I=\text { Identity Matrix }
$$

Inverse

$$
\left.\begin{array}{c}
{[} \\
\\
\\
\\
\\
A
\end{array}\right] \times\left[\begin{array}{ll}
& \\
A & \\
A \times B=I & B=A^{-1} \\
A \times A^{-1}=A^{-1} \times A=I
\end{array}\right.
$$

Page 16

Inverse Matrix via Gaussian Elimination

$$
\begin{gathered}
{\left[\begin{array}{ll|ll}
a_{11} & a_{12} & 1 & 0 \\
a_{21} & a_{22} & 0 & 1
\end{array}\right]} \\
\cdot \\
\text {. Gaussian Elimination Rules } \\
{\left[\begin{array}{llll}
1 & 0 & b_{11} & b_{12} \\
0 & 1 & b_{21} & b_{22}
\end{array}\right]} \\
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]}
\end{gathered}
$$

Page 17

Matrix Rules

Scalar Multiplier: $\boldsymbol{A} \times\left[a_{i j}\right]=\left[A a_{i j}\right]$

$$
\begin{array}{rcc}
\text { Addition: }\left[a_{i j}\right] \pm\left[b_{i j}\right]= & {\left[a_{i j} \pm b_{i j}\right]} \\
\boldsymbol{n} \times \boldsymbol{m} n \times \boldsymbol{m} & \boldsymbol{n} \times \boldsymbol{m}
\end{array}
$$

m columns

$$
\text { nrows } \quad A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right]=\left[a_{i j}\right]
$$

Matrix Rules-cont.

$$
\left.\begin{array}{rl}
\text { Multiplication: } & {\left[a_{i j}\right] \times\left[b_{i j}\right]=} \\
& n \times m \quad m \times k \quad n \times k
\end{array}\right]
$$

Identity Matrix:

$$
\begin{gathered}
I=\left[a_{i j}\right] \quad a_{i i}=1, \quad a_{i j}=0 \quad i \neq j \\
A n \times n \quad A^{-1} n \times n \quad A^{-1} \times A=I \\
A \times B \neq B \times A \text { in general }
\end{gathered}
$$

Matrix Multiply

\[

\]

jth column

$$
\left.\begin{array}{cc}
\text { ith } & {\left[\begin{array}{ll}
\text { row } & i
\end{array}\right], C_{i j}} \\
&
\end{array}\right]
$$

$$
n \times k
$$

$$
C_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i m} b_{m j}
$$

$$
\begin{gathered}
{\left[a_{i 1}, \ldots, a_{i m}\right]\left[\begin{array}{c}
b_{1 j} \\
\cdots \\
b_{m j}
\end{array}\right]=} \\
a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i m} b_{m j}=C_{i j}
\end{gathered}
$$

Page 20

Inverse Matrix calculation

	A				
a_{11}	a_{12}	a_{13}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
\boldsymbol{a}_{21}	a_{22}	a_{23}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
\boldsymbol{a}_{31}	\boldsymbol{a}_{32}	\boldsymbol{a}_{33}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Gaussian. Elimination
$\left[\begin{array}{lll}1 & 0 & \mathrm{O} \\ \mathbf{0} & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]$

$$
A^{-1}=B
$$

Gaussian Elimination Rules

You may substitute a new row by:

1. Multiply a row by a scalar
2. Add two rows
3. Exchange rows

Two Linear Equations - Common Solutions

	Col1	Col2	x_{2}		
Row 1	$A_{11} x_{1}$	$A_{12} x_{2}=b_{1}$	A	A_{12}	b_{1}
Row 2	$A_{21} x_{1}$	$A_{22} x_{2}=b_{2}$	\boldsymbol{A}_{21}	A_{22}	b_{2}

$$
x_{1}=\frac{A_{22} b_{1}-A_{12} b_{2}}{A_{22} A_{11}-A_{12} A_{21}} \quad x_{2}=\frac{A_{11} b_{2}-A_{21} b_{1}}{A_{11} A_{22}-A_{21} A_{12}}
$$

Page 22

Two Linear Equations - Gaussian Elimination

Gaussian Elimination:

1. Exchange rows
2. Multiply a row by a scalar (number)
3. Add rows and exchange

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \underset{\rightarrow}{\operatorname{scalar}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\right] \begin{aligned}
& x_{1}=c_{1} \\
& x_{2}=c_{2}
\end{aligned}
$$

Two Linear Equations - Substitution

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
x_{1} & x_{2} & \\
{\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & c_{1} \\
0 & a_{22}
\end{array}\right.} & c_{2}
\end{array}\right] \quad a_{21}=0} \\
& x_{2}=\frac{c_{2}}{a_{22}}, \quad x_{1}=\left(c_{1}-a_{12} x_{2}\right) / a_{11} \\
& a_{11} x_{1}+a_{12} x_{2}=c_{1} \\
& x_{1}=c_{1}-a_{12} x_{2} / a_{11}
\end{aligned}
$$

Page 24

Identity
Gaussian Elimination:

$$
\begin{array}{ccl|l}
x_{1} & x_{2} & x_{3} & \\
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & 0 a_{32} & a_{33} \\
b_{3}
\end{array}\right] \begin{array}{l}
x_{1}=c_{1} \\
x_{2}=c_{2} \\
x_{3}=c_{3}
\end{array} .}
\end{array}
$$

or
Substitution:

$$
\begin{aligned}
& x_{1} x_{2} \\
& {\left[\begin{array}{cc|c}
a_{11} & x_{3} & \\
& a_{12} & a_{13} \\
& & a_{23} \\
c_{2} \\
& a_{33} & c_{3}
\end{array}\right]} \\
& a_{33} x_{3}=c_{3} \\
& x_{3}=c_{3} / a_{33} \\
& x_{2}=\left[c_{2}-a_{23} x_{3}\right] / a_{21} \\
& x_{1}=\left[c_{1}-a_{12} x_{2}-a_{13} x_{3}\right] / a_{11}
\end{aligned}
$$

or

$$
A^{-1}-\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Page 25

Anx \boldsymbol{n} Technology Matrix $\boldsymbol{X} \boldsymbol{n} \boldsymbol{x} 1$ Production Schedule Col Matrix Dnx 1 Demand Vector Col Matrix

$$
\begin{gathered}
X=A X+D \\
(1-A) X=D \\
X=(I-A)^{-1} D
\end{gathered}
$$

$$
x_{i}=a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}+d_{i}
$$

$x_{i}=\#$ of goods labeled \boldsymbol{i}
$a_{i j}=$ fraction of $\boldsymbol{x}_{\boldsymbol{i}}$ goods to make $\boldsymbol{x}_{\boldsymbol{j}}$ goods
$a_{i j} \geq 0, I-A$ invertible

$$
\begin{gathered}
A=\left[a_{i j}\right] \quad X=\left[x_{i}\right] \quad D=\left[x d_{i}\right] \\
(I-A)^{-1} \text { all non - negative entries }
\end{gathered}
$$

Given A and D , compute X or given A and X, compute D

Finite Math Helper

Linear Models - Math 117

The notebook contains the various definitions and formulas utilized in Chapter Five through Seven of the book, Finite Math, by Thompson, Maki, and McKinley used in M117 and the second half of M 118 at Indiana University.

This notebook was created by Dr. Craig Hane when he studied the course to create a set of videos to help students succeed in the course. Indeed, he says he wishes he had had such a notebook when he first studied the course to help his students. Big Time Saver!

This notebook IS NOT a textbook and it does not teach the student anything. It is just a convenient reference notebook to save time looking up formulas and definitions when solving Finite Math problems.

If you want help in your Finite Math course, the best help is, of course, a good tutor. Obviously, that might be expensive and logistically difficult.

Another resource that could save you much time and frustration is the Online Finite Math Help Program that was created by Triad Math, Inc., consisting of over 100 online videos and a forum. For details visit:

